Search found 9 matches

by forumito
3.9.2009 20:02
Forum: Od ničle do neskončnosti
Topic: Nimam rešitev. Aniviller, hitra pomoč!
Replies: 3
Views: 836

Re: Nimam rešitev. Aniviller, hitra pomoč!

\vec{r}=\vec{r}(u)+t\vec{r'}(u) (tangenta na krivuljo pri parametru u). Se pravi \{x,y\}=r(\phi)\{\cos\phi,\sin\phi\} +t(r'(\phi)\{\cos\phi,\sin\phi\}+r(\phi)\{-\sin\phi,\cos\phi\}) Je \big(r'(\phi)\{\cos\phi,\sin\phi\}+r(\phi)\{-\sin\phi,\cos\phi\}\big) enako \big(x'(\phi), y'(\phi)\big)=\big(r'(\...
by forumito
3.9.2009 17:04
Forum: Od ničle do neskončnosti
Topic: Nimam rešitev. Aniviller, hitra pomoč!
Replies: 3
Views: 836

Nimam rešitev. Aniviller, hitra pomoč!

Tudi Erdosove Knjige nimam. :) Prosim (čimprej) preverite moje "rešitve" (kjer sploh nisem siguren so vprašaji "???"; prosim popravite me za vsako "malenkost", npr. napačna raba notacije, napačni grafi, karkoli :idea:). 1. (a) Zapiši zvezo med polarnima in kartezičnima koordinatama točke v ravnini. ...
by forumito
20.1.2009 20:35
Forum: Od ničle do neskončnosti
Topic: Diofantske enačbe
Replies: 6
Views: 3395

Re: Diofantske enačbe

cHewap wrote:ja mislm da je tko:
če namesto x, y in z daš noter izraze z t1 in t2 se ti use lepo okrajša in dobiš, da je rešitev neskončno mnogo
Ne, zagotovo je rešitev končno.
by forumito
10.1.2009 20:57
Forum: Od ničle do neskončnosti
Topic: Diofantske enačbe
Replies: 6
Views: 3395

Re: Diofantske enačbe

\(7x+11y+6z=45\)

Rešitve: \(x=t_1 \text{, } y=6t_2+t_1+3 \text{, } z=2-11t_2-3t_1\)

Število pozitivnih rešitev (vem, da so zgolj neenačbe, samo si ne znam pomagati :oops: )?
by forumito
25.9.2008 13:38
Forum: Od ničle do neskončnosti
Topic: Matematika pomoč!
Replies: 433
Views: 66088

Re: Matematika pomoč!

Izvrstno lucidno ( :idea: , lux :) ) shrink :arrow: omejenost \(\frac{1}{2} \sin (2 \alpha)\) na \([-1/2,1/2]\), Mafijec :arrow: \((sin(x) + cos(x))' = 0\) (in potem \(tan\) :D )
by forumito
25.9.2008 11:49
Forum: Od ničle do neskončnosti
Topic: Matematika pomoč!
Replies: 433
Views: 66088

Re: Matematika pomoč!

\sin\alpha+\cos\alpha=A ; |A|\leq\sqrt2 \sin\alpha*\cos\alpha= :?: Poskusil sem vse (osnovne) prijeme: s polovičnimi koti, pretvarjanje produkta v vsoto (kar je v bistvu \frac{1}{2}\sin{2x} :( ) Namig: Kvadriraj enačbo in upoštevaj znano zvezo \sin^2 \alpha + \cos^2 \alpha = 1 . 8) =\frac{(\sin\alp...
by forumito
25.9.2008 10:26
Forum: Od ničle do neskončnosti
Topic: Matematika pomoč!
Replies: 433
Views: 66088

Re: Matematika pomoč!

\(\sin\alpha+\cos\alpha=A\); \(|A|\leq\sqrt2\)

\(\sin\alpha*\cos\alpha=\) :?:

Poskusil sem vse (osnovne) prijeme: s polovičnimi koti, pretvarjanje produkta v vsoto (kar je v bistvu \(\frac{1}{2}\sin{2x}\) :( )
by forumito
18.9.2008 21:49
Forum: Od ničle do neskončnosti
Topic: Matematika pomoč!
Replies: 433
Views: 66088

Re: Matematika pomoč!

2. Dobim \frac{45}{4}b^2-4a^2=a^2b^2 ter 16b^2-\frac{16*7}{9}a^2=a^2b^2 . Izrazim npr. b^2 , potem se pa zaplete v ena dolga čreva (trikrat sem poskusil, če izpostaviš a^2 še slabše). Pomoč, prosim? Glede prve: a in b imata pri hiperboli in elipsi isti pomen. Samo plus med clenoma spremenis v minus...
by forumito
18.9.2008 18:53
Forum: Od ničle do neskončnosti
Topic: Matematika pomoč!
Replies: 433
Views: 66088

Re: Matematika pomoč!

1. "Elipsa dana z enačbo \frac{x^2}{9}+\frac{y^2}{25}=1 in enakoosna hiperbola imata skupni gorišči. Zapišite enačbo hiperbole." Ni mi povsem jasna povezava med osema elipse in osema hiperbole. Če imata skupni gorišči je e enak. Gorišče elipse je F(0,4) . Kako naprej, kako izračunati b_{hiperbole} ...