Search found 17 matches

by kolenca
12.2.2017 12:31
Forum: Od ničle do neskončnosti
Topic: limita po definiciji
Replies: 1
Views: 3940

limita po definiciji

Bi mi znal kdo dokazat po definiciji, da je lim(n--> ∞) ((n^a)/(b^n)) = 0
Hvala.
by kolenca
8.9.2016 8:56
Forum: Od ničle do neskončnosti
Topic: algebraične strukture
Replies: 6
Views: 5225

Re: algebraične strukture

Aha, razumem. Hvala za odgovor.
by kolenca
7.9.2016 9:26
Forum: Od ničle do neskončnosti
Topic: algebraične strukture
Replies: 6
Views: 5225

Re: algebraične strukture

Aha, hvala! Ni tako tezko kot sem mislila da je. Vprasal bi te samo se eno nalogo ki je podobna drugi gre pa tako: dokaži, da je f: G-->G izomorfizem grup , f(x) = g°x°g^(-1). Kako naj pokazem da je v jedru le enota? Za surjektivnost pa tudi nevem kaj bi naredila (izracunat inverz, mogoce na tak nac...
by kolenca
6.9.2016 20:48
Forum: Od ničle do neskončnosti
Topic: algebraične strukture
Replies: 6
Views: 5225

Re: algebraične strukture

Nalogi sta zelo elementarni. Obrnljiv element pomeni, da obstaja inverz za množenje. Obrnljiva elementa v \mathbb{Z} sta 1 in -1 ; oba sta inverza sama sebi. 2. naloga: Naj bo f:G\to H izomorfizem (t.j. obrnljiv homomorfizem). Ker je f obrnljiv kot preslikava, ima inverz f^{-1}:H\to G , ki je tudi ...
by kolenca
5.9.2016 17:47
Forum: Od ničle do neskončnosti
Topic: algebraične strukture
Replies: 6
Views: 5225

algebraične strukture

Prosila bi, če mi kdo pomaga rešit tole nalogo. a) Poišči vse obrnljive elemente kolobarja (Z, +, x-krat). kaj sploh pomeni obrnljive elemente? b)če je f: G --> H izomorfizem grup, je tudi f^(-1): H-->G izomorfizem grup. Dokaži. na kak način naj to dokažem. ve da mora biti med njima homomorfizem in ...
by kolenca
21.8.2016 13:37
Forum: Od ničle do neskončnosti
Topic: Taylorjev polinom
Replies: 1
Views: 3924

Taylorjev polinom

Bi mi mogoče znav kdo pomagati pri 4. nalogi na tem izpitu: https://ucilnica1415.fmf.uni-lj.si/pluginfile.php/4968/mod_resource/content/1/2.izp_11_12.pdf Znam določit točko f(2)=1 in f´(2)=1/2 , znam tudi odvajat po x in y, vendar se mi zatakne pridrugih odvodih, saj nevem kako izračunat f´´(2). Ali...
by kolenca
19.8.2016 21:44
Forum: Od ničle do neskončnosti
Topic: Določi matriko A
Replies: 14
Views: 5842

Re: Določi matriko A

hvala za razlago!
by kolenca
19.8.2016 8:33
Forum: Od ničle do neskončnosti
Topic: Določi matriko A
Replies: 14
Views: 5842

Re: Določi matriko A

nekaj še.. kakšen ima pomen v navodiu sebi adjungirn operator A.. moram kje upoštevt ali samo na koncu ko dobim matriko A, da more bit njena transponiranka enaka. hvala Pomen ima, da je prehodna matrika ortogonalna (lastni vektorji so ortogonalni). Zaradi tega pride A simetrična matrika (sebi adjun...
by kolenca
17.8.2016 17:07
Forum: Od ničle do neskončnosti
Topic: Določi matriko A
Replies: 14
Views: 5842

Re: Določi matriko A

sedaj ko sem preverila še, sem ugotovila da si jedro funkcionala za lastno vrednost 2, (x^2-2, x-1) po enačbi skalarnega produkta ni pravokotno.
a je potrebno narediti se gramm scmidta?
by kolenca
17.8.2016 17:03
Forum: Od ničle do neskončnosti
Topic: Določi matriko A
Replies: 14
Views: 5842

Re: Določi matriko A

nekaj še.. kakšen ima pomen v navodiu sebi adjungirn operator A.. moram kje upoštevt ali samo na koncu ko dobim matriko A, da more bit njena transponiranka enaka.
hvala
by kolenca
17.8.2016 16:58
Forum: Od ničle do neskončnosti
Topic: Določi matriko A
Replies: 14
Views: 5842

Re: Določi matriko A

aha, aha, hvala. iz jedra funkcionala sem tako dobila tista dva polinoma (da sem v f vstavila p(x)=ax^2 + bx +c in se potem dobila a(x^2-2)+b( x-1)) iz tega pa sem potem šla iskat še enega q(x)= ax^2 + bx +c, da bo skalarni produkt z njima enak 0(po tisti formuli). in sem dobila še tu en polinom. ta...
by kolenca
17.8.2016 16:12
Forum: Od ničle do neskončnosti
Topic: Določi matriko A
Replies: 14
Views: 5842

Re: Določi matriko A

lako bi pa naredila tudi tako da jedro funkcionala napišem v preodno matriko, izračunam inverz in A s pomočjo enačbe A=PDP(-1). samo potem mi skalarni produkt ne pomaga pri tej nalogi. zato morem vrjetno kot sem prej napisala s pomočjo te formule <Ap,q> = <p,A*q> p- je baza funkcionala, q pa sandard...
by kolenca
17.8.2016 16:07
Forum: Od ničle do neskončnosti
Topic: Določi matriko A
Replies: 14
Views: 5842

Re: Določi matriko A

torej če sem prav poračunala sta jedro funkcionala polinoma x^2 - 2 in x-1. potem pa si izberem lhko še tretjega za lastno vrednost 1, kar 1.?
potem pa te tri polinome dam v skalarni produkt s q, ki je baza {1,x,x^2} in dopovnim matriko. a je to prav?
hvala.
by kolenca
17.8.2016 8:42
Forum: Od ničle do neskončnosti
Topic: Določi matriko A
Replies: 14
Views: 5842

Določi matriko A

Bi mi prosim kdo znav razližit to nalogo. Kako se lotit. V prostoru je podan skalarni produkt <p,q> =p (-1)q (-1) +p (0)q (0) +p (1)q (1) polinomov stopnje najvec 2. Sebi adjungiran operator A:R2 ---> R2 ima lastno vrednost 1 in dvojno lastno vrednost 2. Lastni podprostor za 2 je jedro funkcionala f...
by kolenca
11.8.2016 14:46
Forum: Od ničle do neskončnosti
Topic: algebra naloga
Replies: 4
Views: 4040

Re: algebra naloga

je mišljeno kot prostor na C.
ok, hvala. sem rešila, upam da prav.