Našli ste 381 zadetkov

Napisal/-a skrat
19.1.2015 8:39
Forum: Šolski kotiček
Tema: Naloga iz fizike POMOČ
Odgovori: 57
Ogledi: 14064

Re: Naloga iz fizike POMOČ

Malo čudno se zdi, da maš problem takega tipa pa še nisi slišal za Lagarangeovo mehaniko. Namreč tole z Newtonom reševat.. to bi bla štala.
Napisal/-a skrat
6.1.2015 23:26
Forum: Šolski kotiček
Tema: Matrika
Odgovori: 17
Ogledi: 5039

Re: Matrika

Huh ja... Hmmm... Niti nisem prepričan, da naloga to zahteva ampak če sem prav razumel, moraš iz baze sestavit neko matriko, ki ti naredi transponiranje? No v teh poznih urah ne vidim druga kot zelo naporne poti, in sicer: (\alpha \begin{bmatrix} 1 &0 \\ 0& 0 \end{bmatrix}+\beta \begin{bmatrix} 0 &1...
Napisal/-a skrat
6.1.2015 22:58
Forum: Šolski kotiček
Tema: Matematični problemi- prosim za pomoč
Odgovori: 6
Ogledi: 2517

Re: Matematični problemi- prosim za pomoč

3. 170\cdot 15=170\codt 3+162\cdot 12\mu ali Isto delo kot ga opravi 170 delavcev v 15ih dneh, opravi 170 delavcev v treh dneh + 162 delavcev v 12ih dneh z učinkovitostjo \mu . Iz zgornje enačbe dobiš \mu =1.0493827160493827 torej je treba učinkovitost povečati za \mu -1 . Lahko greš tudi drugače: 1...
Napisal/-a skrat
28.12.2014 22:47
Forum: Šolski kotiček
Tema: Elementarna geometrija
Odgovori: 38
Ogledi: 14295

Re: Elementarna geometrija

skrat napisal/-a:No, vsaj po grafiki sodeč se mi zdi da je tole smolejleo reševal v Geogebri.

Kakorkoli že, moji izračuni v mathematici so bistveno drugačni.
... moji izračuni NISO bistveno drugačni. To sem hotu rečt. Pardon.
Napisal/-a skrat
28.12.2014 21:05
Forum: Šolski kotiček
Tema: Elementarna geometrija
Odgovori: 38
Ogledi: 14295

Re: Elementarna geometrija

No, vsaj po grafiki sodeč se mi zdi da je tole smolejleo reševal v Geogebri. Kakorkoli že, moji izračuni v mathematici so bistveno drugačni. nini.png In sicer spodnja točka pri T_1=(x -> -2.21355, y -> 29.9182) in zgornja točka T_2=(x -> -3.68925, y -> 49.8637) z izhodiščem kot je prikazano na sliki...
Napisal/-a skrat
28.12.2014 12:40
Forum: Šolski kotiček
Tema: Elementarna geometrija
Odgovori: 38
Ogledi: 14295

Re: Elementarna geometrija

Grafično se niti ne zdi težko rešit, res pa je da excela res ne obvladam in ne vem kake funkcije vse imaš notri. Ampak če vzameš spodnjo točko na rdeči črti s svoje skice in si jo izbereš za izhodišče kroga s polmerom 30 boš dobil dve presečišči z zgornjo krožnico. Izbereš pravo presečišče (ki je že...
Napisal/-a skrat
25.12.2014 20:46
Forum: Šolski kotiček
Tema: Kar nekaj nalog iz Matematiki 2
Odgovori: 5
Ogledi: 2596

Re: Kar nekaj nalog iz Matematiki 2

Tko, čisto na hitro, ker nimam veliko časa v tem momentu, upam da me bo kdo popravil, če sem naredu kakšno napako v tej naglici. 1. (dolžina krivulje) V linku ki sem ti ga poslal piše , da za parametrične krivulje velja da je dolžina krivulje l=\int ds , kjer je za parametrične krivulje ds=\sqrt{(\f...
Napisal/-a skrat
19.12.2014 13:41
Forum: Šolski kotiček
Tema: Kar nekaj nalog iz Matematiki 2
Odgovori: 5
Ogledi: 2596

Re: Kar nekaj nalog iz Matematiki 2

1. Integral v polarnih koorinatah. Verjetno ti manjka kakšna konstanta v tvojem izrazu za r ? Če ne druga že zaradi enot. Integral v polarnih koordinatah funkcije f(r,\varphi ) je \int _0 ^R\int _0 ^{2*\pi } f(r,\varphi) r dr d\varphi 2. Pač, obstaja formula za računanje dolžin - poglej si http://ww...
Napisal/-a skrat
18.12.2014 12:28
Forum: Šolski kotiček
Tema: Matematika
Odgovori: 228
Ogledi: 64278

Re: Matematika

Tako je.

Kompleksna konjugacija na realnih številih ničesar ne spremeni. To se večkrat vzame tudi kot definicjo realnega števila, recimo \(b\) je realen, če za njega velja \(b=\bar b\)
Napisal/-a skrat
16.12.2014 20:21
Forum: Šolski kotiček
Tema: Matematika
Odgovori: 228
Ogledi: 64278

Re: Matematika

To je definicija skalarnega produkta v kompleksnem.

http://en.wikipedia.org/wiki/Dot_produc ... ex_vectors
Napisal/-a skrat
9.12.2014 19:58
Forum: Šolski kotiček
Tema: Fizika. Pomoč prosim!
Odgovori: 17
Ogledi: 5301

Re: Fizika. Pomoč prosim!

Prav imaš, da dvomiš v pravilnost take rešitve. Najprej je trenje sorazmerno vsoti teže in centrifugalne sile, ne pa razliki (zaradi radiusa se pritisk na podlago in s tem trenje veča, ne pa manjša). Druga napaka pa je v tem, da pri vektorskem seštevanju sil pri navpični komponenti ni upoštevana te...
Napisal/-a skrat
17.11.2014 20:59
Forum: Šolski kotiček
Tema: integral
Odgovori: 25
Ogledi: 7657

Re: integral

Zagotovo pa velja tole: V števcu imaš c^b\int_{0}^{\infty }x^be^{-cx} in če vpelješ novo spremenljivko cx=u \Rightarrow cdx=du to pomeni c^b\int_{0}^{\infty }x^be^{-cx}=\frac{c^b}{c^{b+1}}\int_{0}^{\infty }u^be^{-u}=\frac 1 c \Gamma (b+1) Tvoj celoten izraz je torej \frac 1 c \frac{\Gamma (b+1)}{\Ga...
Napisal/-a skrat
17.11.2014 16:36
Forum: Šolski kotiček
Tema: integral
Odgovori: 25
Ogledi: 7657

Re: integral

Za začetek razpiši \frac{c^b\int_{0}^{\infty}x^be^{-cx}dx}{\Gamma (b)}=\frac{c^b\int_{0}^{\infty}x^be^{-cx}dx}{\int_{0}^{\infty}t^{b-1}e^{-t}dt} V števcu vpelješ novo spremenljivko x=\frac 1 c t \Rightarrow dx=\frac 1 c dt , kar pomeni \frac{c^b\int_{0}^{\infty}x^be^{-cx}dx}{\int_{0}^{\infty}t^{b-1...
Napisal/-a skrat
17.11.2014 15:19
Forum: Šolski kotiček
Tema: integral
Odgovori: 25
Ogledi: 7657

Re: integral

Za začetek razpiši \frac{c^b\int_{0}^{\infty}x^be^{-cx}dx}{\Gamma (b)}=\frac{c^b\int_{0}^{\infty}x^be^{-cx}dx}{\int_{0}^{\infty}t^{b-1}e^{-t}dt} V števcu vpelješ novo spremenljivko x=\frac 1 c t \Rightarrow dx=\frac 1 c dt , kar pomeni \frac{c^b\int_{0}^{\infty}x^be^{-cx}dx}{\int_{0}^{\infty}t^{b-1}...
Napisal/-a skrat
16.11.2014 22:05
Forum: Šolski kotiček
Tema: Naloga iz fizike POMOČ
Odgovori: 57
Ogledi: 14064

Re: Naloga iz fizike POMOČ

V točki 1 naj bo naboj e1. v točki 2 naboj 2e in v točki 3 naboj e3. a) Naboj e3 se nahaja v električnem polju, ki je sestavljeno iz dveh prispevkov: Električno polje naboja e1 in električno polje e2. V splošnem je jakost električnega polja, ki ga ustvarja naboj e enaka E=\frac{e}{4\pi \varepsilon _...