Čudeži in znanost

Prapok, vesolje, kozmologija, črne luknje...
Roman
Posts: 6324
Joined: 21.10.2003 8:03

Re: Čudeži in znanost

Post by Roman » 18.6.2015 11:42

Meni sicer intuicija ne pravi istega kot tebi, izpeljavo pa dobiš tule: https://sl.wikipedia.org/wiki/Kineti%C4%8Dna_energija. Zanimivo bi bilo slišati te različne razlage.

User avatar
vojko
Posts: 11435
Joined: 29.5.2004 15:18
Location: LIMBUŠ
Contact:

Re: Čudeži in znanost

Post by vojko » 18.6.2015 15:44

Roman wrote:Meni sicer intuicija ne pravi istega kot tebi, izpeljavo pa dobiš tule: https://sl.wikipedia.org/wiki/Kineti%C4%8Dna_energija. Zanimivo bi bilo slišati te različne razlage.
Recimo:
"Work is force dot/times distance". But this is not really satisfying, because you could then ask "Why is work force dot distance?" and the mystery is the same.
The only way to answer questions like this is to rely on symmetry principles, since these are more fundamental than the laws of motion. Using Galilean invariance, the symmetry that says that the laws of physics look the same to you on a moving train, you can explain why energy must be proportional to the mass times the velocity squared.
First, you need to define kinetic energy. I will define it as follows: the kinetic energy E(m,v) of a ball of clay of mass m moving with velocity v is the amount of calories of heat that it makes when it smacks into a wall. This definition does not make reference to any mechanical quantity, and it can be determined using thermometers. I will show that, assuming Galilean invariance, E(v) must be the square of the velocity.
E(m,v), if it is invariant, must be proportional to the mass, because you can smack two clay balls side by side and get twice the heating, so
E(m,v)=mE(v)
Further, if you smack two identical clay balls of mass m moving with velocity v head-on into each other, both balls stop, by symmetry. The result is that each acts as a wall for the other, and you must get an amount of heating equal to 2m E(v).
But now look at this in a train which is moving along with one of the balls before the collision. In this frame of reference, the first ball starts out stopped, the second ball hits it at 2v, and the two-ball stuck system ends up moving with velocity v.
The kinetic energy of the second ball is mE(2v) at the start, and after the collision, you have 2mE(v) kinetic energy stored in the combined ball. But the heating generated by the collision is the same as in the earlier case. So there are now two 2mE(v) terms to consider: one representing the heat generated by the collision, which we saw earlier was 2mE(v), and the other representing the energy stored in the moving, double-mass ball, which is also 2mE(v). Due to conservation of energy, those two terms need to add up to the kinetic energy of the second ball before the collision:
mE(2v)=2mE(v)+2mE(v)
E(2v)=4E(v)
which implies that E is quadratic.
http://physics.stackexchange.com/questi ... speed?lq=1
++++++++++++++++++++

http://physics.stackexchange.com/questi ... -2mv2?rq=1
++++++++++++
http://physics.stackexchange.com/questi ... 2-mv2?lq=1

User avatar
shrink
Posts: 14560
Joined: 4.9.2004 18:45

Re: Čudeži in znanost

Post by shrink » 18.6.2015 22:55

Mislim, da se ta dokazovalec, za katerega zakoni gibanja niso dovolj fundamentalni, ne zaveda, da je kinetično energijo ravno definiral preko zakonov gibanja in sicer preko posebnega primera (kar je ironično, glede na pričakovanja o fundamentalnosti): popolnoma neprožnega trka, pri katerem se vsa kinetična energija pretvori v notranjo energijo (toploto). In potem na tej osnovi obravnava neprožni trk dveh krogel enakih mas (spet poseben primer!) v različnih inercialnih sistemih in se spet ne zaveda, da je ta obravnava pravzaprav raba zakona o ohranitvi gibalne količine sistema dveh teles (konkretno: pri neprožnem trku).

Skratka: ta njegov dokaz ni nič drugega kot raba zakonov gibanja v posebnem primeru. Nič pretirano fundamentalnega in seveda na fundamentu tistega, kar se mu ne zdi fundamentalno.

User avatar
vojko
Posts: 11435
Joined: 29.5.2004 15:18
Location: LIMBUŠ
Contact:

Re: Čudeži in znanost

Post by vojko » 19.6.2015 10:05

shrink wrote:Mislim, da se ta dokazovalec, za katerega zakoni gibanja niso dovolj fundamentalni, ne zaveda, da je kinetično energijo ravno definiral preko zakonov gibanja in sicer preko posebnega primera (kar je ironično, glede na pričakovanja o fundamentalnosti): popolnoma neprožnega trka, pri katerem se vsa kinetična energija pretvori v notranjo energijo (toploto). In potem na tej osnovi obravnava neprožni trk dveh krogel enakih mas (spet poseben primer!) v različnih inercialnih sistemih in se spet ne zaveda, da je ta obravnava pravzaprav raba zakona o ohranitvi gibalne količine sistema dveh teles (konkretno: pri neprožnem trku).

Skratka: ta njegov dokaz ni nič drugega kot raba zakonov gibanja v posebnem primeru. Nič pretirano fundamentalnega in seveda na fundamentu tistega, kar se mu ne zdi fundamentalno.
Ufff! Moral sem trikrat prebrati, da sem razumel. Torej ta primer, ki ga komentiraš, ne velja na splošno za kinetično energijo? Ali pač?

User avatar
shrink
Posts: 14560
Joined: 4.9.2004 18:45

Re: Čudeži in znanost

Post by shrink » 19.6.2015 21:34

Tako je: pri delno prožnih trkih in popolnoma prožnih trkih je njegova definicija kinetične energije nesmiselna, kajti pri prvih se le del spremembe kinetične energije teles pretvori v notranjo energijo, pri drugih pa se kinetična energija sistema nasploh ohranja (idealne razmere). On je torej obravnaval poseben primer in vrh vsega izhajal iz znanega zakona gibanja (ohranitve gibalne količine sistema pri trkih), kar pa je hotel zamaskirati v Galilejev princip invariance zakona (katerega?) pri čelnem neprožnem trku dveh krogel enakih mas (in enakih hitrosti za enega inercialnega opazovalca, za inercialnega opazovalca, ki se giblje skupaj z eno od krogel, pa je hitrost te krogle enaka 0, druge krogle, ki se giblje v nasprotni smeri, pa dvakratni hitrosti).

Skratka: obravnava poseben primer, nehote uporabi enega od zakonov gibanja, ki jim ne priznava fundamentalnosti, in to skuša zakamuflirati v princip invariance zakonov za inercialne opazovalce, noče pa na glas povedati, na osnovi katerega zakona je ugotovil, da za enega opazovalca krogli enakih mas obmirujeta, za drugega pa se gibljeta v nasprotni smeri s polovično hitrostjo pred trkom zanj nemirujoče krogle.

User avatar
vojko
Posts: 11435
Joined: 29.5.2004 15:18
Location: LIMBUŠ
Contact:

Re: Čudeži in znanost

Post by vojko » 19.6.2015 21:58

shrink wrote:Tako je: pri delno prožnih trkih in popolnoma prožnih trkih je njegova definicija kinetične energije nesmiselna, kajti pri prvih se le del spremembe kinetične energije teles pretvori v notranjo energijo, pri drugih pa se kinetična energija sistema nasploh ohranja (idealne razmere). On je torej obravnaval poseben primer in vrh vsega izhajal iz znanega zakona gibanja (ohranitve gibalne količine sistema pri trkih), kar pa je hotel zamaskirati v Galilejev princip invariance zakona (katerega?) pri čelnem neprožnem trku dveh krogel enakih mas (in enakih hitrosti za enega inercialnega opazovalca, za inercialnega opazovalca, ki se giblje skupaj z eno od krogel, pa je hitrost te krogle enaka 0, druge krogle, ki se giblje v nasprotni smeri, pa dvakratni hitrosti).

Skratka: obravnava poseben primer, nehote uporabi enega od zakonov gibanja, ki jim ne priznava fundamentalnosti, in to skuša zakamuflirati v princip invariance zakonov za inercialne opazovalce, noče pa na glas povedati, na osnovi katerega zakona je ugotovil, da za enega opazovalca krogli enakih mas obmirujeta, za drugega pa se gibljeta v nasprotni smeri s polovično hitrostjo pred trkom zanj nemirujoče krogle.
Hvala! :D

User avatar
vojko
Posts: 11435
Joined: 29.5.2004 15:18
Location: LIMBUŠ
Contact:

Re: Čudeži in znanost

Post by vojko » 23.6.2015 12:20

shrink wrote:Tako je: pri delno prožnih trkih in popolnoma prožnih trkih je njegova definicija kinetične energije nesmiselna, kajti pri prvih se le del spremembe kinetične energije teles pretvori v notranjo energijo, pri drugih pa se kinetična energija sistema nasploh ohranja (idealne razmere). On je torej obravnaval poseben primer in vrh vsega izhajal iz znanega zakona gibanja (ohranitve gibalne količine sistema pri trkih), kar pa je hotel zamaskirati v Galilejev princip invariance zakona (katerega?) pri čelnem neprožnem trku dveh krogel enakih mas (in enakih hitrosti za enega inercialnega opazovalca, za inercialnega opazovalca, ki se giblje skupaj z eno od krogel, pa je hitrost te krogle enaka 0, druge krogle, ki se giblje v nasprotni smeri, pa dvakratni hitrosti).

Skratka: obravnava poseben primer, nehote uporabi enega od zakonov gibanja, ki jim ne priznava fundamentalnosti, in to skuša zakamuflirati v princip invariance zakonov za inercialne opazovalce, noče pa na glas povedati, na osnovi katerega zakona je ugotovil, da za enega opazovalca krogli enakih mas obmirujeta, za drugega pa se gibljeta v nasprotni smeri s polovično hitrostjo pred trkom zanj nemirujoče krogle.
Mimogrede, ne vem česa Leo Koroški alias osmoljenileo ne more in ne more razumeti? Videti je, da mu dela Newtonova mehanika nepremostljive težave. On bi pa o širjenju vesolja zaradi črnih lukenj... :lol:

qg
Posts: 772
Joined: 13.1.2006 20:05

Re: Čudeži in znanost

Post by qg » 23.6.2015 17:10

vojko wrote:
Roman wrote:Meni sicer intuicija ne pravi istega kot tebi, izpeljavo pa dobiš tule: https://sl.wikipedia.org/wiki/Kineti%C4%8Dna_energija. Zanimivo bi bilo slišati te različne razlage.
Recimo:
"Work is force dot/times distance". But this is not really satisfying, because you could then ask "Why is work force dot distance?" and the mystery is the same.
The only way to answer questions like this is to rely on symmetry principles, since these are more fundamental than the laws of motion. Using Galilean invariance, the symmetry that says that the laws of physics look the same to you on a moving train, you can explain why energy must be proportional to the mass times the velocity squared.
First, you need to define kinetic energy. I will define it as follows: the kinetic energy E(m,v) of a ball of clay of mass m moving with velocity v is the amount of calories of heat that it makes when it smacks into a wall. This definition does not make reference to any mechanical quantity, and it can be determined using thermometers. I will show that, assuming Galilean invariance, E(v) must be the square of the velocity.
E(m,v), if it is invariant, must be proportional to the mass, because you can smack two clay balls side by side and get twice the heating, so
E(m,v)=mE(v)
Further, if you smack two identical clay balls of mass m moving with velocity v head-on into each other, both balls stop, by symmetry. The result is that each acts as a wall for the other, and you must get an amount of heating equal to 2m E(v).
But now look at this in a train which is moving along with one of the balls before the collision. In this frame of reference, the first ball starts out stopped, the second ball hits it at 2v, and the two-ball stuck system ends up moving with velocity v.
The kinetic energy of the second ball is mE(2v) at the start, and after the collision, you have 2mE(v) kinetic energy stored in the combined ball. But the heating generated by the collision is the same as in the earlier case. So there are now two 2mE(v) terms to consider: one representing the heat generated by the collision, which we saw earlier was 2mE(v), and the other representing the energy stored in the moving, double-mass ball, which is also 2mE(v). Due to conservation of energy, those two terms need to add up to the kinetic energy of the second ball before the collision:
mE(2v)=2mE(v)+2mE(v)
E(2v)=4E(v)
which implies that E is quadratic.
http://physics.stackexchange.com/questi ... speed?lq=1
++++++++++++++++++++

http://physics.stackexchange.com/questi ... -2mv2?rq=1
++++++++++++
http://physics.stackexchange.com/questi ... 2-mv2?lq=1
Formula \(dW=Fdx\) je takšna zaradi formule za kinetično energijo \(dW=m v dv\), ta pa je takšna kot posledica relativistične formule \(W=\gamma mc^2\), ki JE bolj fundamentalna. Po Emily Noether pa so ohranitveni zakoni posledica simetrij prostora in časa ...

Me pa zanima, zakaj točno je formula \(W=\gamma mc^2\) posledica simetrij razdalj in prostora?
shrink wrote:Tako je: pri delno prožnih trkih in popolnoma prožnih trkih je njegova definicija kinetične energije nesmiselna, kajti pri prvih se le del spremembe kinetične energije teles pretvori v notranjo energijo, pri drugih pa se kinetična energija sistema nasploh ohranja (idealne razmere). On je torej obravnaval poseben primer in vrh vsega izhajal iz znanega zakona gibanja (ohranitve gibalne količine sistema pri trkih), kar pa je hotel zamaskirati v Galilejev princip invariance zakona (katerega?) pri čelnem neprožnem trku dveh krogel enakih mas (in enakih hitrosti za enega inercialnega opazovalca, za inercialnega opazovalca, ki se giblje skupaj z eno od krogel, pa je hitrost te krogle enaka 0, druge krogle, ki se giblje v nasprotni smeri, pa dvakratni hitrosti).

Skratka: obravnava poseben primer, nehote uporabi enega od zakonov gibanja, ki jim ne priznava fundamentalnosti, in to skuša zakamuflirati v princip invariance zakonov za inercialne opazovalce, noče pa na glas povedati, na osnovi katerega zakona je ugotovil, da za enega opazovalca krogli enakih mas obmirujeta, za drugega pa se gibljeta v nasprotni smeri s polovično hitrostjo pred trkom zanj nemirujoče krogle.
Jaz temu, kar je napisal ne bi rekel "definicija energije", ampak je s pomočjo simetrije razložil, zakaj je kvadratna odvisnost od hitrosti. Čeprav pri tem uporablja zakon o ohranitvi gibalne količine (ZOGK), je v njegovi izpeljavi še vedno dodana vrednost, ker kvadratne odvisnosti od v ni v ZOGK. Če je uporabil notranjo energijo, s tem ni uporabil formule \(dW=Fdx\), torej je tudi v tem dodana vrednosti.

Polprožnih trkov in različnih kep ilovice ni uporabljal, vendar v tem ni nič narobe. Pokazal je, kako si predstavljamo na najenostavnejšem primeru in v tem primeru izpeljava DELUJE.
Kako bi sicer drugače prišli do formule \(dW=Fdx\)? Oziroma, zakaj se z uporabo različnih kep ta izpeljava poruši? Mislim, da se ne.

qg
Posts: 772
Joined: 13.1.2006 20:05

Re: Čudeži in znanost

Post by qg » 24.6.2015 9:23

Da se popravim,
tisto zgoraj je kar izpeljava, ne samo razlaga. Namreč v naslednjem primeru lahko vzamemo eno kepo z maso m in hitrostjo 3v, druga kepa pa ima hitrost 0 in maso 2m. Tako pokažemo, da je pri trikratni hitrosti 9 krat večja energija .... Potem pokažemo pri 4 kratni hitrosti, potem pri necelih faktorjih ....

Hkrati njegova uvedba notranje energije pove samo, da se energija ohranja, ne pove pa še, da je kvadratna odvisnost od hitrosti. To pove ta izpeljava.

Prehod na formulo \(dW=Fdx\) je enostaven, ker sila je samo \(F=dG/dt\), torej vidna je izpeljava iz formule \(W=mv^2/2\).

User avatar
vojko
Posts: 11435
Joined: 29.5.2004 15:18
Location: LIMBUŠ
Contact:

Re: Čudeži in znanost

Post by vojko » 24.6.2015 14:36

qg wrote:Da se popravim,
tisto zgoraj je kar izpeljava, ne samo razlaga. Namreč v naslednjem primeru lahko vzamemo eno kepo z maso m in hitrostjo 3v, druga kepa pa ima hitrost 0 in maso 2m. Tako pokažemo, da je pri trikratni hitrosti 9 krat večja energija .... Potem pokažemo pri 4 kratni hitrosti, potem pri necelih faktorjih ....

Hkrati njegova uvedba notranje energije pove samo, da se energija ohranja, ne pove pa še, da je kvadratna odvisnost od hitrosti. To pove ta izpeljava.

Prehod na formulo \(dW=Fdx\) je enostaven, ker sila je samo \(F=dG/dt\), torej vidna je izpeljava iz formule \(W=mv^2/2\).
Čakam, da se oglasi Leo Koroški in reče kakšno močno... :wink:

User avatar
shrink
Posts: 14560
Joined: 4.9.2004 18:45

Re: Čudeži in znanost

Post by shrink » 24.6.2015 21:58

qg wrote:
shrink wrote:Tako je: pri delno prožnih trkih in popolnoma prožnih trkih je njegova definicija kinetične energije nesmiselna, kajti pri prvih se le del spremembe kinetične energije teles pretvori v notranjo energijo, pri drugih pa se kinetična energija sistema nasploh ohranja (idealne razmere). On je torej obravnaval poseben primer in vrh vsega izhajal iz znanega zakona gibanja (ohranitve gibalne količine sistema pri trkih), kar pa je hotel zamaskirati v Galilejev princip invariance zakona (katerega?) pri čelnem neprožnem trku dveh krogel enakih mas (in enakih hitrosti za enega inercialnega opazovalca, za inercialnega opazovalca, ki se giblje skupaj z eno od krogel, pa je hitrost te krogle enaka 0, druge krogle, ki se giblje v nasprotni smeri, pa dvakratni hitrosti).

Skratka: obravnava poseben primer, nehote uporabi enega od zakonov gibanja, ki jim ne priznava fundamentalnosti, in to skuša zakamuflirati v princip invariance zakonov za inercialne opazovalce, noče pa na glas povedati, na osnovi katerega zakona je ugotovil, da za enega opazovalca krogli enakih mas obmirujeta, za drugega pa se gibljeta v nasprotni smeri s polovično hitrostjo pred trkom zanj nemirujoče krogle.
Jaz temu, kar je napisal ne bi rekel "definicija energije", ampak je s pomočjo simetrije razložil, zakaj je kvadratna odvisnost od hitrosti. Čeprav pri tem uporablja zakon o ohranitvi gibalne količine (ZOGK), je v njegovi izpeljavi še vedno dodana vrednost, ker kvadratne odvisnosti od v ni v ZOGK. Če je uporabil notranjo energijo, s tem ni uporabil formule \(dW=Fdx\), torej je tudi v tem dodana vrednosti.


On sam je eksplicitno navedel, da tako definira kinetično energijo. In ZOGK, ki ga je nevede, nehote ali potihem uporabil, je ravno del zakonov gibanja, ki se jim je hotel izogniti pod krinko "simetrije".
Polprožnih trkov in različnih kep ilovice ni uporabljal, vendar v tem ni nič narobe. Pokazal je, kako si predstavljamo na najenostavnejšem primeru in v tem primeru izpeljava DELUJE.
Kako bi sicer drugače prišli do formule \(dW=Fdx\)? Oziroma, zakaj se z uporabo različnih kep ta izpeljava poruši? Mislim, da se ne.
Poseben primer še ni dokaz za splošno veljavnost, poleg tega pa se je ravno tej formuli hotel izogniti, kot je tudi hotel dokazovati na osnovi fundamentalnosti, ki presega Newtonove zakone gibanja, a je - kakšna ironija - le dokazoval na osnovi posebnih primerov, ki izhajajo iz zakonov gibanja.

User avatar
shrink
Posts: 14560
Joined: 4.9.2004 18:45

Re: Čudeži in znanost

Post by shrink » 24.6.2015 22:11

qg wrote:Da se popravim,
tisto zgoraj je kar izpeljava, ne samo razlaga. Namreč v naslednjem primeru lahko vzamemo eno kepo z maso m in hitrostjo 3v, druga kepa pa ima hitrost 0 in maso 2m. Tako pokažemo, da je pri trikratni hitrosti 9 krat večja energija .... Potem pokažemo pri 4 kratni hitrosti, potem pri necelih faktorjih ....
Še vedno gre za neprožni trk (poseben primer) in še vedno za rabo ZOGK, torej zakona gibanja, ki pa se mu je hotel izogniti.
Hkrati njegova uvedba notranje energije pove samo, da se energija ohranja, ne pove pa še, da je kvadratna odvisnost od hitrosti. To pove ta izpeljava.
Ah, ja, kvadratna odvisnost pa izhaja iz ohranitve gibalne količine, kar je zakon gibanja in gre torej za izpeljavo iz zakonov gibanja.
Prehod na formulo \(dW=Fdx\) je enostaven, ker sila je samo \(F=dG/dt\), torej vidna je izpeljava iz formule \(W=mv^2/2\).
Ja, seveda, ampak dopovej ti to onemu dokazovalcu, ki meni:
"Work is force dot/times distance". But this is not really satisfying, because you could then ask "Why is work force dot distance?" and the mystery is the same. The only way to answer questions like this is to rely on symmetry principles, since these are more fundamental than the laws of motion.

qg
Posts: 772
Joined: 13.1.2006 20:05

Re: Čudeži in znanost

Post by qg » 25.6.2015 12:44

shrink wrote: On sam je eksplicitno navedel, da tako definira kinetično energijo. In ZOGK, ki ga je nevede, nehote ali potihem uporabil, je ravno del zakonov gibanja, ki se jim je hotel izogniti pod krinko "simetrije".

Poseben primer še ni dokaz za splošno veljavnost, poleg tega pa se je ravno tej formuli hotel izogniti, kot je tudi hotel dokazovati na osnovi fundamentalnosti, ki presega Newtonove zakone gibanja, a je - kakšna ironija - le dokazoval na osnovi posebnih primerov, ki izhajajo iz zakonov gibanja.
Pokazal je sorazmernost kinetične energije z \(v^2\), brez, da bi uporabil formulo \(dW=Fdx\). Izvor te zadnje formule si je težko predstavljati in zato njegova izpeljava ima "dodano vrednost".

Če je hotel obiti zakone gibanja, (gibalno količino) in jo je hkrati uporabil, tu sploh ni zelo pomembno. Vredno je to omeniti in nič več. Bistvo pa je sorazmernost z sorazmernost kinetične energije z \(v^2\), brez, da bi uporabil formulo \(W=Fdx\).

Tukaj je samo vprašanje, če s to izpeljavo karkoli vizualiziral Noetherin teorem?
https://en.wikipedia.org/wiki/Noether%27s_theorem
shrink wrote: Še vedno gre za neprožni trk (poseben primer) in še vedno za rabo ZOGK, torej zakona gibanja, ki pa se mu je hotel izogniti.
Kaj je problem, če je trk samo neprožen? Izračune za neprožne trke lahko uporabi za polprožne trke.

Bistvo nelinearnosti energije pa je ravno v notranji energiji, saj se ohranja, čeprav makroskopsko telo miruje. Pri tem njegovem izračunu pa je razlika med linearno odvisnostjo od \(v\) in kvadratno odvisnostjo od \(v\) samo v notranji energiji.

User avatar
shrink
Posts: 14560
Joined: 4.9.2004 18:45

Re: Čudeži in znanost

Post by shrink » 25.6.2015 19:07

qg wrote:
shrink wrote: On sam je eksplicitno navedel, da tako definira kinetično energijo. In ZOGK, ki ga je nevede, nehote ali potihem uporabil, je ravno del zakonov gibanja, ki se jim je hotel izogniti pod krinko "simetrije".

Poseben primer še ni dokaz za splošno veljavnost, poleg tega pa se je ravno tej formuli hotel izogniti, kot je tudi hotel dokazovati na osnovi fundamentalnosti, ki presega Newtonove zakone gibanja, a je - kakšna ironija - le dokazoval na osnovi posebnih primerov, ki izhajajo iz zakonov gibanja.
Pokazal je sorazmernost kinetične energije z \(v^2\), brez, da bi uporabil formulo \(dW=Fdx\). Izvor te zadnje formule si je težko predstavljati in zato njegova izpeljava ima "dodano vrednost".

Če je hotel obiti zakone gibanja, (gibalno količino) in jo je hkrati uporabil, tu sploh ni zelo pomembno. Vredno je to omeniti in nič več. Bistvo pa je sorazmernost z sorazmernost kinetične energije z \(v^2\), brez, da bi uporabil formulo \(W=Fdx\).
Kakšna dodana vrednost, te prosim! Očitno tudi tebi (kot ni njemu) ne potegne, da je nevede uporabil to "formulo"; samo zate razlaga (da ti ne bo več težko predstavljivo):

Zakon o ohranitvi gibalne količine za trk dveh teles različnih mas in različnih hitrosti (hitrosti pred in po trku sta v istih smereh):

\(m_1v_1+m_2v_2=m_1v_1'+m_2v_2'\)

oz.

\(m_1(v_1'-v_1)+m_2(v_2'-v_2)=0\)

Če množimo to zvezo z \(1/2((v_1'+v_1)+(v_2'+v_2))\), dobimo:

\(1/2m_1(v_1'^2-v_1^2)+1/2m_2(v_2'^2-v_2^2)=-1/2(m_1(v_1'-v_1)(v_2'+v_2)+m_2(v_2'-v_2)(v_1'+v_1))\)

Sedaj se postavi vprašanje, kdaj se kvadratna forma na levi strani ohranja tako kot linearna forma (gibalna količina), torej, kdaj je leva stran enaka 0? Odgovor je očiten, mora namreč veljati:

\(1/2(m_1(v_1'-v_1)(v_2'+v_2))=-1/2(m_2(v_2'-v_2)(v_1'+v_1))\)

Ker po izreku o gibalni količini za vsako od teles velja:

\(m_1(v_1'-v_1)=I\)

\(m_2(v_2'-v_2)=-I\)

sledi:

\(\displaystyle I\frac{v_2'+v_2}{2}=I\frac{v_1'+v_1}{2}\)

Če je sila konstanta, potem sledi:

\(\displaystyle F\frac{v_2'+v_2}{2}\Delta t=F\frac{v_1'+v_1}{2}\Delta t\Rightarrow F\overline{v_2}\Delta t=F\overline{v_1}\Delta t\Rightarrow Fs_2=Fs_1\)

Skratka, zakon/izrek o ohranitvi gibalne količine IMPLICIRA kinetično energijo in njeno kvadratno formo. Kinetična energija pa se pri trkih v splošnem ne ohranja (le pri prožnih trkih), za razliko od gibalne količine, ki se pri trkih vedno ohranja. Gibalna količina je torej bolj fundamentalna kot kinetična energija in pri obravnavi trkov se zakonom gibanja ni mogoče izogniti.
Tukaj je samo vprašanje, če s to izpeljavo karkoli vizualiziral Noetherin teorem?
https://en.wikipedia.org/wiki/Noether%27s_theorem
Niti približno, kinetična energija se v njegovem posebnem primeru sploh ne ohranja, ta teorem pa govori o količinah, ki se ohranjajo.
shrink wrote:Še vedno gre za neprožni trk (poseben primer) in še vedno za rabo ZOGK, torej zakona gibanja, ki pa se mu je hotel izogniti.
Kaj je problem, če je trk samo neprožen? Izračune za neprožne trke lahko uporabi za polprožne trke.

Bistvo nelinearnosti energije pa je ravno v notranji energiji, saj se ohranja, čeprav makroskopsko telo miruje.
Joj, kakšno nakladanje! Neprožni trk je poseben primer in zato ugotovitve v zvezi z njim ne morejo veljati splošno. To o "nelinearnosti" energije, ki je bojda povezana z notranjo energijo, pa je totalna neumnost. Če je npr. trk prožen, se kinetična energija sistema ohranja in zato ni nikakršne pretvorbe v notranjo energijo.
Pri tem njegovem izračunu pa je razlika med linearno odvisnostjo od \(v\) in kvadratno odvisnostjo od \(v\) samo v notranji energiji.
Narobe, ne more biti nikakršne "razlike" med linearno in kvadratno odvisnostjo, ker se gibalne količine ne more odštevati od kinetične energije. Ohranitev gibalne količine je eno, kinetične energije pa drugo (prvo pri trkih vselej velja, drugo pa le pri prožnih trkih). Seveda - kot že rečeno - pa pretvorba v notranjo energijo s samo kvadratno odvisnostjo nima zveze.

roberto11
Posts: 1022
Joined: 17.11.2008 9:01
Location: Dolenjska

Re: Čudeži in znanost

Post by roberto11 » 25.6.2015 22:04

Vojko wrote:Najbolj rušijo pravno kulturo takšna dejanja politikov:

-vzvišen in zaničevalen odnos politike do sodstva;

-neupoštevanje avtoritete sodišč. Spomnite se samo izjav Janše, ko je bil pravnomočno obsojeni kriminalec. Priča smo odrekanju avtoritete nekemu zelo pomembnemu državnemu organu (Komisiji za preprečevanje korupcije) s strani prvega tožilca v državi samo zato, ker gre zanj. V Angliji kot zibelki evropske pravne kulture je kaj takega preprosto nezamisljivo;

-pragmatistično in utilitaristično pojmovanje države in prava. Bistvo tega pojmovanja je v približno takšnem razmišljanju: Država in prava sta "dobra", če meni osebno koristita. Sodišča so v redu, če se ravnajo po moji politični opciji, drugače so pristranska, neprofesionalna, podkupljiva, diletantska, ipd.
Vojko, preberi si definicijo psihopata, pa ti bodo zgornja dejanja povsem logična in razumljiva. :)

Post Reply