matematika - pomoč

Ko tudi učitelj ne more pomagati...
ss123
Prispevkov: 6
Pridružen: 24.11.2015 8:52

Re: matematika - pomoč

Odgovor Napisal/-a ss123 » 8.2.2016 14:09

derik napisal/-a:Za smiselno statistično obravnavo potrebuješ vsaj deset meritev. Razen tega mora biti jasno, kaj je sploh mišljeno z "napako", kaj je namen meritve in ali ponavljaš meritve vedno na istem merjencu, ali pa vsakič na drugem.
Na izpitu smo imeli takšno nalogo in še kar ne razumem kako naj bi se rešila. Verjetno je bilo navodilo malo drugače zastavljeno.
Najlepša hvala za odgovor.

DirectX11
Prispevkov: 410
Pridružen: 22.10.2008 14:50

Re: matematika - pomoč

Odgovor Napisal/-a DirectX11 » 10.2.2016 12:15

DirectX11 napisal/-a:
Zanima me še kako se izrazi funkcijo kot sinusoido? Ali uporabiš eulerjev obrazec?
Oprostite, ker preveč sprašujem, vendar še vedno nisem našel odgovora. Bi lahko kdo odgovoril na vprašanje?

Hvala.

Zajc
Prispevkov: 1098
Pridružen: 26.6.2008 19:15

Re: matematika - pomoč

Odgovor Napisal/-a Zajc » 10.2.2016 13:02

DirectX11 napisal/-a:Rešujem praktično nalogo iz Fourierjeve transformacije, pa me zanima če je pravilno:

\(\int_{-1}^{0} (1+t)e^{-j\omega t}dt=\) ...
Mene zanima, kaj je sploh ta \(j\) v integralu.

maxwell
Prispevkov: 96
Pridružen: 16.11.2011 19:10

Re: matematika - pomoč

Odgovor Napisal/-a maxwell » 10.2.2016 13:38

Zajc napisal/-a:
DirectX11 napisal/-a:Rešujem praktično nalogo iz Fourierjeve transformacije, pa me zanima če je pravilno:

\(\int_{-1}^{0} (1+t)e^{-j\omega t}dt=\) ...
Mene zanima, kaj je sploh ta \(j\) v integralu.
j predstavlja imaginarno enoto. V elektrotehniki se redko uporablja i, ker je tako označen tok.
DirectX11 napisal/-a:
DirectX11 napisal/-a:
Zanima me še kako se izrazi funkcijo kot sinusoido? Ali uporabiš eulerjev obrazec?
Oprostite, ker preveč sprašujem, vendar še vedno nisem našel odgovora. Bi lahko kdo odgovoril na vprašanje?

Hvala.
Ja. Samo zaenkrat ne vidim, kako bi se dal sinus lepo izraziti. Zakaj pa hočeš ravno sinus imeti izražen v rešitvi?

Zajc
Prispevkov: 1098
Pridružen: 26.6.2008 19:15

Re: matematika - pomoč

Odgovor Napisal/-a Zajc » 10.2.2016 14:52

maxwell napisal/-a:
Zajc napisal/-a:Mene zanima, kaj je sploh ta \(j\) v integralu.
j predstavlja imaginarno enoto. V elektrotehniki se redko uporablja i, ker je tako označen tok.
Aha. No, se mi vidi, da nisem elektrotehnik.
DirectX11 napisal/-a: Zanima me še kako se izrazi funkcijo kot sinusoido? Ali uporabiš eulerjev obrazec?
Če "izraziti kot sinusoido" pomeni zapisati funkcijo v obliki \(f(\omega)=a\sin(b\omega+c)+d\) ali kaj podobnega, potem se verjetno na tak način ne da zapisati.

derik
Prispevkov: 2042
Pridružen: 6.3.2010 9:04

Re: matematika - pomoč

Odgovor Napisal/-a derik » 10.2.2016 15:41

Zakaj pa ne po Eulerju, tako kot je sam predlagal?

Zajc
Prispevkov: 1098
Pridružen: 26.6.2008 19:15

Re: matematika - pomoč

Odgovor Napisal/-a Zajc » 10.2.2016 16:24

Eulerjeva formula da \(\frac{-1+e^{j\omega}-j\omega}{(j\omega)^2}=\frac{-1+\cos{\omega}+j\sin{\omega}-j\omega}{-\omega^2}\), ampak ne vidim, zakaj bi bilo to kaj bližje rešitvi.

derik
Prispevkov: 2042
Pridružen: 6.3.2010 9:04

Re: matematika - pomoč

Odgovor Napisal/-a derik » 11.2.2016 3:19

Zajc napisal/-a:Eulerjeva formula da \(\frac{-1+e^{j\omega}-j\omega}{(j\omega)^2}=\frac{-1+\cos{\omega}+j\sin{\omega}-j\omega}{-\omega^2}\), ampak ne vidim, zakaj bi bilo to kaj bližje rešitvi.
Res ni čisto jasno, kaj se išče, ker je bilo verjetno vprašanje nekoliko iztrgano iz konteksta. Predpostavljam pa, da gre za analizo odziva el. vezja na periodični signal nesinusne oblike, recimo žagaste. V tem primeru se postopa tako, da se signal najprej razvije v Fourierovo vrsto in vsak člen izrazi s kompleksnim fazorjem, ki omogoča enostavnejši izračun. Posamezne odzive se računa za vsako frekvenco posebej s fazorji, na koncu pa je potrebno odzive sešteti v časovnem prostoru, ne pa kar s seštevanjem fazorjev različnih frekvenc. Prehod iz fazorja v časovni prostor se izvede tako, da se upošteva samo realni del oz. cosinus iz Eulerjeve enačbe.

Uporabniški avatar
shrink
Prispevkov: 14082
Pridružen: 4.9.2004 18:45

Re: matematika - pomoč

Odgovor Napisal/-a shrink » 11.2.2016 19:29

DirectX11 napisal/-a:Rešujem praktično nalogo iz Fourierjeve transformacije, pa me zanima če je pravilno:

\(\int_{-1}^{0} (1+t)e^{-j\omega t}dt\)
Fourierjeva transformacija funkcije \(f(t)\) je običajno definirana takole:

\(\displaystyle\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt\)

tako da mi ni jasno, kakšno transformacijo računaš.

DirectX11
Prispevkov: 410
Pridružen: 22.10.2008 14:50

Re: matematika - pomoč

Odgovor Napisal/-a DirectX11 » 12.2.2016 15:50

Računamo Fourierjevo transformacijo funkcije:
\(f(t) = 1 + t\)

na intervalu od -1 do 0. Vendar se sprašujem če to lahko, prvič: Računamo na določen interval, in drugič: Funkcija ni absolutno integrabilna.

Glede zapisa z sinusoido, ja mogoče je res vprašanje malo nenavadno: Torej če vzamem Fourierjev transform funkcije in odvisno spremenljivko omega, in izrišem graf, bom videl katere frekvence zavzema prvotna funkcija.

Uporabniški avatar
shrink
Prispevkov: 14082
Pridružen: 4.9.2004 18:45

Re: matematika - pomoč

Odgovor Napisal/-a shrink » 13.2.2016 17:18

DirectX11 napisal/-a:Računamo Fourierjevo transformacijo funkcije:
\(f(t) = 1 + t\)

na intervalu od -1 do 0. Vendar se sprašujem če to lahko, prvič: Računamo na določen interval, in drugič: Funkcija ni absolutno integrabilna.
To potem ni Fourierjeva transformacija, saj je le-ta definirana z integralom, ki sem ga prej zapisal. Zato mi ni jasno, kaj sploh računaš.

Drugače lahko Fourierjevo transformacija \(f(t)=1+t\) prebereš iz tabel, npr. tukaj (kjer pač \(x\) nadomestiš z \(t\)).

Sicer pa gre pri \(f(t)=t\) za posplošitev funkcije na porazdelitev (distribucijo), zato je tudi v tabelah navedeno, da gre za distribucijo, na forumu pa je bilo že govora o tem:

viewtopic.php?f=23&t=2834

DirectX11
Prispevkov: 410
Pridružen: 22.10.2008 14:50

Re: matematika - pomoč

Odgovor Napisal/-a DirectX11 » 15.2.2016 9:24

Če funkcijo omejimo na določen interval in rečemo da je vse ostalo 0. Potem bi pa lahko računali Fourierjevo transformacijo na tem omejenem intervalu.

Uporabniški avatar
shrink
Prispevkov: 14082
Pridružen: 4.9.2004 18:45

Re: matematika - pomoč

Odgovor Napisal/-a shrink » 16.2.2016 11:50

DirectX11 napisal/-a:Če funkcijo omejimo na določen interval in rečemo da je vse ostalo 0. Potem bi pa lahko računali Fourierjevo transformacijo na tem omejenem intervalu.
Fourierjevo transformacijo (integral) se še vedno računa kot prej (v istih mejah), le da je na določenih intervalih integrand (in s tem določeni integral) enak 0.

DirectX11
Prispevkov: 410
Pridružen: 22.10.2008 14:50

Re: matematika - pomoč

Odgovor Napisal/-a DirectX11 » 21.2.2016 16:36

Kaj predstavlja prvi člen \(a_0\) v Fourierjevi trigonometrični vrsti? Mogoče fazni zamik? To sem se že dolgo spraševal.

derik
Prispevkov: 2042
Pridružen: 6.3.2010 9:04

Re: matematika - pomoč

Odgovor Napisal/-a derik » 21.2.2016 16:47

DirectX11 napisal/-a:Kaj predstavlja prvi člen \(a_0\) v Fourierjevi trigonometrični vrsti? Mogoče fazni zamik? To sem se že dolgo spraševal.
Prvi člen je povprečna vrednost funkcije.

Odgovori

Kdo je na strani

Po forumu brska: 0 registriranih uporabnikov in 7 gostov