Matematične metode v fiziki

Ko tudi učitelj ne more pomagati...
Odgovori
Številka6
Prispevkov: 1
Pridružen: 28.12.2018 10:24

Matematične metode v fiziki

Odgovor Napisal/-a Številka6 »

Zdravo,

zanima me, ali mi lahko kdo pomaga z reševanjem naslednje naloge:

Po 10 m dolgi železni cevi z notranjim premerom 5 cm in 3 mm debelo steno teče vrela voda. Cev je obdana s 3 cm debelo plastjo azbestne volne, ki ima toplotno prevodnost 0,1 W/mK.
Kolikšen je toplotni tok uhaja iz cevi, če je zunanja temperatura 10 stopinj celzija?

Reštev je 776 W.


Vem, da se nalogo reši z uporabo Laplaceove in Poissonove enačbe in z uporabo cilindričnih koordinat; zatakne se mi že pri postavljanju prve (izhodne enačbe). Prosil bi za namig oz. kak nasvet kako se naloge lotit.


Hvala vsem za pomoč in lep pozdrav.

Uporabniški avatar
shrink
Prispevkov: 14573
Pridružen: 4.9.2004 18:45

Re: Matematične metode v fiziki

Odgovor Napisal/-a shrink »

Ni mi sicer jasno, zakaj omenjaš Laplaceovo in Poissonovo enačbo, ko pa je osnovni mehanizem prevod toplote, ki ga popisuje Fourierov zakon. Ker je stena sestavljena iz dveh cilindričnih lupin (votlih valjev), je najbolje delati s toplotnimi upornostmi. Toplotna upornost za posamezen i-ti votel valj je (glej npr. https://en.m.wikipedia.org/wiki/Thermal ... cal_shells):

\(\displaystyle R=\frac{\ln (r_{i+1} /r_i)}{2 \pi \lambda_i L}\)

V tem primeru imamo dva votla valja/cilindrični lupini, katerih skupna toplotna upornost je vsota upornosti posameznih lupin:

\(\displaystyle R_{cel}=\frac{\ln (r_2 /r_1)}{2 \pi \lambda_1 L}+\frac{\ln (r_3 /r_2)}{2 \pi \lambda_2 L}\),

pri čemer je \(r_2=r_1+\delta_1\) in \(r_3=r_2+\delta_2\)
(\(\delta_1\) in \(\delta_2\) sta debelini sten).

Za dane podatke (dodatno sem vzel za železo \(\lambda_1=80\rm{~\frac{W}{mK}}\)) pride:

\(R_{cel}=0.1159\rm{~\frac{K}{W}}\),

toplotni tok skozi sestavljeno cilindrično steno pa:

\(\displaystyle\dot{Q}=\frac{T_n-T_z}{R_{cel}}=776.36\rm{~W}\),

pri čemer sem za vrelo vodo vzel:

\(T_n=100\rm{~^{\circ} C}\).
Zadnjič spremenil shrink, dne 27.2.2019 12:07, skupaj popravljeno 1 krat.

smolejleo
Prispevkov: 1686
Pridružen: 3.3.2004 11:52
Kraj: celovec
Kontakt:

Re: Matematične metode v fiziki

Odgovor Napisal/-a smolejleo »

Šrinkolino!
Rešitev je zelo pozna in grozna!



Si po kritiki le popravil svojo površnost - pohvalno gospod Šrink - ste pospravili podstreho!
Zadnjič spremenil smolejleo, dne 27.2.2019 12:37, skupaj popravljeno 1 krat.


Uporabniški avatar
shrink
Prispevkov: 14573
Pridružen: 4.9.2004 18:45

Re: Matematične metode v fiziki

Odgovor Napisal/-a shrink »

smolejleo napisal/-a:
27.2.2019 11:57
Šrinkolino!
Rešitev je zelo pozna in grozna!



Si po kritiki le popravil svojo površnost - pohvalno gospod Šrink - ste pospravili podstreho!
viewtopic.php?f=13&t=6203&start=285#p125750

Odgovori