Matrike

O matematiki, številih, množicah in računih...
Odgovori
Uporabniški avatar
Aniviller
Prispevkov: 7263
Pridružen: 15.11.2004 18:16

Odgovor Napisal/-a Aniviller »

Lepa naloga :)

Pade ti na pamet in gres matriko kvadrirat:
\((\mathrm{I}-2\mathrm{X}\mathrm{X^T})^2=\)
\((\mathrm{I}-2\mathrm{X}\mathrm{X^T})(\mathrm{I}-2\mathrm{X}\mathrm{X^T})=\)
\(\mathrm{I}-4\mathrm{X}\mathrm{X^T}+4\mathrm{X}\mathrm{X^T}\mathrm{X}\mathrm{X^T}=\)
\(\mathrm{I}-4\mathrm{X}\mathrm{X^T}+4\mathrm{X}(\mathrm{X^T}\mathrm{X})\mathrm{X^T}=\)
\(\mathrm{I}-4\mathrm{X}\mathrm{X^T}+4\mathrm{X}\mathrm{X^T}=\)
\(\mathrm{I}\)
Torej je nasa matrika koren identitete in je tako sama sebi inverz.

Veliko srece pri izpitu :wink:

Uporabniški avatar
fiona
Prispevkov: 23
Pridružen: 10.12.2006 12:01
Kraj: pri četrti jablani desno

Odgovor Napisal/-a fiona »

Aniviller napisal/-a:Lepa naloga :)

Veliko srece pri izpitu :wink:
ja res ful lepa naloga :lol: :lol: :lol:

hvala :D mam že tok dost teh matrik, da komi čakam, da bo izpit in da se jih rešim... upam :oops:

dci
Prispevkov: 8
Pridružen: 30.6.2004 15:40
Kraj: 'East, West, Lenart is BEST!!!'
Kontakt:

Kako izračunati inverzno matriko poljubne matrike?

Odgovor Napisal/-a dci »

Pozdravljeni,

jaz bi vas prosil, če mi lahko kdo opiše postopek reševanja "kako dobiti inverzno matriko" in da mi reši na primeru, ki je spodaj podan ter zraven napiše kakšen postopek je izbral. Mi je jasno, da jo treba v naslednjem koraku enačiti s enotsko matriko I in uporabiti Gaussovo elim. metodo itd, to je pa tudi vse. Ne znam naprej.

Naloga se glasi. Izračunaj inverzno matriko matrike A

3 4 2 7
2 3 3 2
5 7 3 9
2 3 2 3

Hvala ter lp,

dcI.

General
Prispevkov: 1
Pridružen: 23.3.2007 18:53

Odgovor Napisal/-a General »

Napiši si tako:

3 4 2 7 | 1 0 0 0
2 3 3 2 | 0 1 0 0
5 7 3 9 | 0 0 1 0
2 3 2 3 | 0 0 0 1

Uporabljaš 3 metode: množenje vrstice z neničelnim faktorjem, odštevanje (prištevanje) ene vrstice od poljubne druge vrstice in menjava vrstic. Tvoj cilj je s temi operacijami pridelati na levi strani identiteto (to, kar je zdaj na desni.) Če te skrbi, da se boš zapletel in ne boš pridelal identitete, pa začni z metodo, ki ni najbolj elegantna pa te vseeno pripelje do želenega rezultata: prvo vrstico deli s 3, tako da dobiš na prvem mestu 1, potem pa to vrstico množi z ustreznim večkratnikom in odštej od druge, tretje in četrte vrstice. Tako boš dobil na prvem mestu v drugi, tretji in četrti vrstici 0 (na prvem mestu prve vrstice pa bo 1, kar želiš.) Potem lahko 2 vrstico deliš s faktorjem 3, da dobiš na drugem mestu druge vrstice 1 (kar spet hočeš.) Potem lahko od prve vrstice odšteješ ustrezen večkratnik druge vrstice: tako da boš na drugem mestu prve vrstice dobil 0, prvo mesto prve vrstice pa si ne boš pokvaril, saj si prej poskrbel, da je na prvem mestu druge vrstice 0. Potem tako nadaljuješ.
Obstajajo seveda elegantnejše metode: želiš pridelati čim več ničel, zato odštevaš vrstice z lepimi drugimi. Jaz bi začel tako: od 4. odšteješ 2., od 3. odšteješ 2. in 1., od 1. odšt. 3., 2. prišteješ 3. in 4. itn.

Mathematica pravi, da je inverz:

-1/2 11/2 7/2 -13
-1/2 -7/2 -3/2 8
1/2 1/2 -1/2 0
1/2 -1/2 -1/2 1

Uporabniški avatar
Marsovec
Prispevkov: 74
Pridružen: 7.6.2006 15:13

Odgovor Napisal/-a Marsovec »

Aniviller napisal/-a:Ker je invarianta na rotacijo. Sled, determinanta, rang,... se pri rotacijah ohranjajo.
Z zamudo dopolnjujem: sled, determinanta in rang so invariantni za podobnost nasploh in ne le za rotacije!

Uporabniški avatar
sstone
Prispevkov: 180
Pridružen: 30.11.2004 0:05

Odgovor Napisal/-a sstone »

Živeli,
Da ne odpiram nove teme, rabim malo pomoči, kako bi izračunal višino na stranico \(AB\), trikotnika z oglišči A(1,2,0), B(3,0,-3), C(5,2,6), površino trikotnika znam izračunat, za višino pa se ne morem spomnit nič pametnega, malo sem len namreč :D.

LP.

Uporabniški avatar
Aniviller
Prispevkov: 7263
Pridružen: 15.11.2004 18:16

Odgovor Napisal/-a Aniviller »

No, zdaj pa samo ves da je \(2S=c\cdot v_c\) in je stvar resena.

Uporabniški avatar
sstone
Prispevkov: 180
Pridružen: 30.11.2004 0:05

Odgovor Napisal/-a sstone »

Haha, hvala, sej se mi je dozdevalo da bo nekaj enostavnega...

Uporabniški avatar
sstone
Prispevkov: 180
Pridružen: 30.11.2004 0:05

Odgovor Napisal/-a sstone »

Še malček pomoči bi rabu:

Določite konstanto \(b\) tako, da bo premica \(\frac {x-2} {2} = y+1 = \frac {z} {b}\) vzporedna z ravnino \(2x-y+z=1\).

Hvala.

Uporabniški avatar
shrink
Prispevkov: 14584
Pridružen: 4.9.2004 18:45

Odgovor Napisal/-a shrink »

sstone napisal/-a:Še malček pomoči bi rabu:

Določite konstanto \(b\) tako, da bo premica \(\frac {x-2} {2} = y+1 = \frac {z} {b}\) vzporedna z ravnino \(2x-y+z=1\).

Hvala.
Iz enačbe premice prebereš smerni vektor:

\(\vec{p} = (2,1,b)\)

in iz enačbe ravnine normalni vektor:

\(\vec{n} = (2,-1,1)\).

Da bo premica vzporedna z ravnino, mora biti smerni vektor premice pravokoten na normalni vektor ravnine, kar pomeni, da mora biti njun skalarni produkt enak 0:

\(\vec{n} \cdot \vec{p} = 0\),

od koder sledi \(b = -3\).

BTW:

1. Parametrična enačba premice:

\(x = x_0 + at\)
\(y = y_0 + bt\)
\(z = z_0 + ct\)

oz.

\(\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}\),

kjer je \(\vec{p} = (a,b,c)\) smerni vektor in \(T(x_0,y_0,z_0)\) neka točka na premici.

2. Normalna enačba ravnine:

\(ex + fy + gz = h\),

kjer je \(\vec{n} = (e,f,g)\) normalni vektor.

Uporabniški avatar
sstone
Prispevkov: 180
Pridružen: 30.11.2004 0:05

Odgovor Napisal/-a sstone »

Ok, hvala, razmišljal sem v pravi smeri, samo mi ni prihajalo prav. No, sej počasi bo :D .

haklcc
Prispevkov: 24
Pridružen: 14.5.2012 12:29

Re: Matrike

Odgovor Napisal/-a haklcc »

\(A=\[ \left[
\begin{array}{ccccc}
3 & 4 \\
2 & 1 \\
\end{array} \right]\]\)
,\(C=\[ \left[
\begin{array}{ccccc}
-14 & 6 \\
4 & 14 \\
\end{array} \right]\]\)
Naloga: S prevedbo na sistem linearnih enačb določite matriko x, ki reši enačbo: \(AX-XA=-C\)

Po Gaussovemu postopku sem prišel do tega:
\(-4x1+2x2+4x4=-6\)
\(-2x2+4x3=14\)
Problem je ker imam 2 enačbi in 4 neznanke. Kako naj rešim to nalogo ?
\(x2= 2x1 - 2x3 -3\)
\(x3= 7/2 + x2/2\)

Uporabniški avatar
Aniviller
Prispevkov: 7263
Pridružen: 15.11.2004 18:16

Re: Matrike

Odgovor Napisal/-a Aniviller »

Uf. To bi pomenilo, da je sistem predolocen (matrik, ki resijo sistem je neskoncno, ker imas 2 prosta parametra). Vseeno se enkrat preveri, ce ti 2 enacbi res padeta stran ali si kaj zamocil pri Gaussovi elminaciji.

haklcc
Prispevkov: 24
Pridružen: 14.5.2012 12:29

Re: Matrike

Odgovor Napisal/-a haklcc »

Kako se reši to nalogo?

Naj bosta A in B kvadratni matriki in naj bo matrika \(I-B^2A\) obrnljiva.
Pokaži da je: \((I-BAB)^{-1} =I+BA(I-B^2A)^{-1}B\)
(Namig: \(CC^{-1}= I\))

Hvala za odgovore :)

Uporabniški avatar
Aniviller
Prispevkov: 7263
Pridružen: 15.11.2004 18:16

Re: Matrike

Odgovor Napisal/-a Aniviller »

Ah, samo preoblikujes glede na to kaj hoces dobit. \(I-BAB\) in \(I-B^2A\) sta clena, ki nastopata kot inverz, morata biti nekako povezana, opazimo tole: \(B(I-BAB)=(I-B^2A)B\)

To bo najbrz prav prislo enkrat, lahko pa sluzi tudi kot vodilo kaj bi radi videli.

Ne smemo predpostavit, da sta A in B obrnljivi, zato bo treba priti skozi le z mnozenjem z matrikami, ki so garantirano obrnljive, drugace bomo naredili nekaj podobnega kot da bi mnozili z 0.

Da ne bo na obeh straneh inverzov, lahko enacbo mnozimo z \(I-BAB\). Glede na to kar smo opazili zgoraj, je bolje da mnozimo z desne, ker bomo s tem dobili zraven se tisti B in bomo lahko uporabili opazeno zvezo. Mnozenje z leve bi kvecjemu zakompliciralo izraz.
\(I=I-BAB+BA(I-B^2A)^{-1}\underbrace{B(I-BAB)}\)
\(0=-BAB+BA(I-B^2A)^{-1}(I-B^2A)B\)
To je pa ze konec:
\(0=-BAB+BAB\).

Odgovori