FIZIKA

O matematiki, številih, množicah in računih...
Odgovori
maxwell
Prispevkov: 100
Pridružen: 16.11.2011 19:10

Re: FIZIKA

Odgovor Napisal/-a maxwell »

Napisal/-a DirectX11
Ali si mogoče elektrotehnik po izobrazbi?
Jap.

Glede op amp:

Op amp niso ravno moje področje.. Mislim, da je tukaj samo malo nerodno narisano. Pojma idealni in realni se nanašata na puščici, ki označujeta širino pasu - velikost izhodne napetosti. Leva puščica gre od \(+U_{b}\)do \(-U_b\), kar velja za idealni ojačevalnik. Desna puščica pa ne gre do max napajalne napetosti ampak malo manj, kar velja za realni ojačevalnik (če se prav spomnim je ta razlika nekje okrog 1 V). Sivo področje pa samo nakazuje, da je op amp v izkrmiljenju. V bistvu je ta slika za realni op amp, puščica za idealni op amp pa nakazuje do kje bi šla krivulja če je idealni.

DirectX11
Prispevkov: 413
Pridružen: 22.10.2008 14:50

Re: FIZIKA

Odgovor Napisal/-a DirectX11 »

Dobro si to ugotovil maxwell. Hvala.

Še nekaj me zanima:

Kaj je to inverz, pri nalogi "Poišči inverz naslednjega izraza":

\(X(s) = \frac{s-2}{2s^{2}+s+2}\)

Ali je to mogoče v Laplacovem prostoru zapisano?

Uporabniški avatar
shrink
Prispevkov: 14573
Pridružen: 4.9.2004 18:45

Re: FIZIKA

Odgovor Napisal/-a shrink »

Seveda, kaj pa drugo: moraš pa poiskati inverzno transformiranko v časovnem prostoru oz. izvesti inverzno Laplaceovo transformacijo. Integrala ti ni treba računati, ker obstajajo tabele transformirank: dani izraz pač moraš predelati na obliko, ki jo lahko odčitaš iz tabel.

Spet priporočam, da malo pogledaš osnove.

DirectX11
Prispevkov: 413
Pridružen: 22.10.2008 14:50

Re: FIZIKA

Odgovor Napisal/-a DirectX11 »

V zapiskih imam, da je potrebno na začetku poiskati ničli imenovalca, kar je bližnica. Sicer ne vem zakaj, vem le da je potrebno preoblikovati izraz, da lahko preberem iz tabele.

Poiskal sem ničli kvadratnega člena, in dobim dve kompleksni ničli.

Kaj pa sedaj?

maxwell
Prispevkov: 100
Pridružen: 16.11.2011 19:10

Re: FIZIKA

Odgovor Napisal/-a maxwell »

Ničle poiščeš zato, da imenovalec zapišeš v faktorizirani obliki, ker so v tej obliki zapisani tudi v tabelah. V tem primeru ti iskanje ničel ne pomaga, ker dobiš kompleksne ničle.

Tvoj izraz razdeli na dva dela: \(\frac{s}{2s^2+s+2} - \frac{2}{2s^2+s+2}\) in izpostavi 2 v imenovalcih. Dobiš \(2\frac{s}{s^2+\frac{1}{2}+1}-2*2\frac{1}{s^2+\frac{1}{2}+1}\). Ta dva izraza pa nastopata v tabelah.

DirectX11
Prispevkov: 413
Pridružen: 22.10.2008 14:50

Re: FIZIKA

Odgovor Napisal/-a DirectX11 »

Zakaj ni \(\frac{1}{2}\)? Ker če pomnožim z 2 dobim v števcu 2s namesto s.

Pa v imenovalcu je na mestu kjer je bil prej s je sedaj 1/2

maxwell
Prispevkov: 100
Pridružen: 16.11.2011 19:10

Re: FIZIKA

Odgovor Napisal/-a maxwell »

Ups oprosti, narobe sem napisal...

Sedaj imaš v imenovalcu \(2s^2+s+2=2(s^2+\frac{1}{2}s+1)\). Dobiš \(\frac{s-2}{2s^2+s+2}=\frac{1}{2}\frac{s}{s^2+\frac{1}{2}s+1}-\frac{1}{2}\frac{2}{s^2+\frac{1}{2}s+1}\).

DirectX11
Prispevkov: 413
Pridružen: 22.10.2008 14:50

Re: FIZIKA

Odgovor Napisal/-a DirectX11 »

Pogledal sem v tabelo, in najbolj podoben zadnjemu je:

\(\frac{\omega}{(s-a)^{2}+ \omega^{2}}\) ~ \(\frac{1}{s^{2}+\frac{s}{2}+1}\)

Vendar kako preoblikovati \(\frac{s}{2}\) ali lahko množim z 0?

maxwell
Prispevkov: 100
Pridružen: 16.11.2011 19:10

Re: FIZIKA

Odgovor Napisal/-a maxwell »

Jaz sem pogledal v Bronštajna in je takoj na prvi strani. Lahko se reši tudi malo drugače.

Imenovalec dopolni do popolnega kvadrata: \(s^2+\frac{1}{2}s+1=(s+\frac{1}{4})^2+\frac{15}{16}\). Dobiš \(\frac{1}{2}\frac{s}{(s+\frac{1}{4})^2+\frac{15}{16}} -\frac{1}{(s+\frac{1}{4})^2+\frac{15}{16}}\) (pri drugem ulomku se 2 v števcu krajša z 1/2).

Drugi ulomek je podoben tistemu, kar si napisal, kjer je \(\alpha=\frac{1}{4}\) in \(\omega^2=\frac{15}{16}\), \(\omega=\frac{\sqrt{15}}{4}\). Ker pa je v števcu še ena \(\omega\) moraš tvoj drugi ulomek množiti in deliti z \(\omega\) (ker hkrati množiš in deliš z isto vrednostjo izraza ne spremeniš). Takole \(\frac{1}{(s+\frac{1}{4})^2+\frac{15}{16}}*\frac{\frac{\sqrt{15}}{4}}{\frac{\sqrt{15}}{4}}\) sedaj imaš enak izraz.

Prepišeš rešitev iz tabele in vanjo vstaviš tvoj alfa in omega in dobiš: \(\frac{1}{\frac{\sqrt{15}}{4}} e^{-\frac{1}{4}t} sin(\frac{\sqrt{15}}{4}t)\). To je inverz drugega dela tvojega izraza, aja pa še minus je spredaj, ker ima drugi ulomek negativen predznak.

Sedaj pa še prvi del. Iz tabele se bo uporabil tale izraz:\({ s+\alpha \over (s+\alpha )^2 + \omega^2 }\).

DirectX11
Prispevkov: 413
Pridružen: 22.10.2008 14:50

Re: FIZIKA

Odgovor Napisal/-a DirectX11 »

Kaj je na prvi strani? Tabele od Laplacea? Ali postopki?

maxwell
Prispevkov: 100
Pridružen: 16.11.2011 19:10

Re: FIZIKA

Odgovor Napisal/-a maxwell »

Ah napačen gumb...

Tisto 1/2 pred ulomkom malo malo pustimo zaenkrat. Spremenimo ulomek, da bo podoben tistemu iz tabele. Vidiš, da imenovalec imaš zapisan enako, v števcu imaš s manjka pa alfa. Zato v števcu prišteješ in odšteješ alfo: \(\frac{s+\alpha-\alpha}{(s+\frac{1}{4})^2+\frac{\sqrt{15}}{4}}\) in zopet ulomek razdeliš na dva: \(\frac{s+\alpha}{(s+\frac{1}{4})^2+\frac{\sqrt{15}}{4}} -\frac{\alpha}{(s+\frac{1}{4})^2+\frac{\sqrt{15}}{4}}\). Sedaj je prvi ulomek podoben izrazu in ga pretvoriš po tabeli, drugi ulomek se pa pretvori podobno kot prejšnji (ker imaš tukaj alfo v števcu, potrebuješ pa omego moraš z njo množiti in deliti. Čisto enak postopek kot zgoraj.)

maxwell
Prispevkov: 100
Pridružen: 16.11.2011 19:10

Re: FIZIKA

Odgovor Napisal/-a maxwell »

V Bronštajnu, kjer se začne tabela Laplace-ove transformacije so ti izrazi na prvi strani (na začetku tabele).

maxwell
Prispevkov: 100
Pridružen: 16.11.2011 19:10

Re: FIZIKA

Odgovor Napisal/-a maxwell »

Tukaj je še ena tabela za transformacije http://ece.uprm.edu/~caceros/tablas/Laplace1.pdf.

Primeri kako se rešuje pa tukaj: http://tutorial.math.lamar.edu/Classes/ ... forms.aspx

Tvoja končna rešitev z WolframAlfo: http://www.wolframalpha.com/input/?i=in ... 2Cs%2Ct%5D.

Aja pa ko boš izraze spravljal skupaj ne pozabi na tisto 1/2...

DirectX11
Prispevkov: 413
Pridružen: 22.10.2008 14:50

Re: FIZIKA

Odgovor Napisal/-a DirectX11 »

Torej ta postopek, "Dopolni do popolnega kvadrata...itd." piše v knjigi?

maxwell
Prispevkov: 100
Pridružen: 16.11.2011 19:10

Re: FIZIKA

Odgovor Napisal/-a maxwell »

Uf ne vem, verjetno je kje v knjigah z Laplacovo transformacijo. Lahko si pogledaš tukaj https://www.youtube.com/watch?v=TEP0nXJN9Pc

Odgovori